Multifractal analysis in non-uniformly hyperbolic interval maps
نویسندگان
چکیده
In this paper, we study the Hausdorff dimension of generalized intrinsic level set with respect to given ergodic meausre in a class non-uniformly hyperbolic interval maps finitely many branches.
منابع مشابه
Multifractal analysis of non-uniformly hyperbolic systems
We prove a multifractal formalism for Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville–Pomeau map.
متن کاملSe p 20 08 MULTIFRACTAL ANALYSIS OF NON - UNIFORMLY HYPERBOLIC SYSTEMS
We prove a multifractal formalism for Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville–Pomeau map.
متن کاملJ an 2 00 8 MULTIFRACTAL ANALYSIS OF NON - UNIFORMLY HYPERBOLIC SYSTEMS
We prove a multifractal formalism for Birkhoff averages of continuous functions in the case of some non-uniformly hyperbolic maps, which includes interval examples such as the Manneville–Pomeau map.
متن کاملMultifractal analysis for expanding interval maps with infinitely many branches
Abstract. In this paper we investigate multifractal decompositions based on values of Birkhoff averages of functions from a class of symbolically continuous functions. This will be done for an expanding interval map with infinitely many branches and is a generalisation of previous work for expanding maps with finitely many branches. We show that there are substantial differences between this ca...
متن کاملMultifractal Analysis of Hyperbolic Flows
We establish the multifractal analysis of hyperbolic flows and of suspension flows over subshifts of finite type. A non-trivial consequence of our results is that for every Hölder continuous function noncohomologous to a constant, the set of points without Birkhoff average has full topological entropy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinearity
سال: 2021
ISSN: ['0951-7715', '1361-6544']
DOI: https://doi.org/10.1088/1361-6544/ac355d